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(Task Definition) Given a user comment, 
detect whether the claim it makes was 
previously fact-checked with respect to a 
collection of verified claims and their 
corresponding articles. 

(Crowd Fact-Checker) A person on social 
media who posts a fact-checking article as a 
reply to a (potentially relevant) claim made in a 
conversational thread. 

Problem Definition

2



Motivation

3

● Leverage the Knowledge of the Crowd Fact-Checkers
○ Prior work: mostly small datasets but manually annotated
○ People can fact-check by referring to previously written “credible” fact-checks
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● Leverage the Knowledge of the Crowd Fact-Checkers
○ Prior work: mostly small datasets but manually annotated
○ People can fact-check by referring to previously written “credible” fact-checks
○ Collect large-scale datasets without the need of human-in-the-loop

● Improving the Model Learning from Noisy Data 
○ Labeling with Distant Supervision
○ Loss modifications and model self-adaptation

● Evaluate the Model Abilities 
○ Strategy for data mixing from multiple sources (e.g., manual vs. distant labeling)
○ Measure the impact of model architecture and data selection
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Contributions

● Large-scale collection of 330,000 pairs of tweets–fact-checking articles
○ Covering diverse topics from conversations that span four years.

● Two distant supervision strategies to label the dataset;
○ Used techniques that do not need human supervision

● Novel method to learn from this data using modified self-adaptive training
○ Based on a MNR loss, self-adaptive learning, and additional weighing.

● Sizable improvements over the state of the art on a standard test set.
○ Our dataset yields better results compared to manually annotated alternatives
○ Proposed models show 4% P@1, MRR, MAP@5 gains over strong baselines.
○ We achieve 2% improvement over the current state of the art.
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○ All replies or quote tweets that contain a link to a fact-check (Snopes)
○ From October 2017 till October 2021

● Dataset size
○ 333K unique tweet–article pairs in English (collected)

■ The largest alternative contains 1.4K pairs (Shaar et al., 2021) 
■ There are multimodal datasets w/ 19K pairs, 3K articles (Vo and Lee 2019)

○ 10K unique fact-checking articles.
● Data Labeling (w/ Distant Supervision) 

○ Two labeling strategies:
■ Jaccard Similarity (5K–27K “correct” pairs)
■ Semi-Supervision (3.5K–49K “correct” pairs)

○ Performed manual annotations to estimate the quality at each threshold
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Data Labeling Quality
● Quality Estimation

○ 3 annotators, 150 conv–reply–tweet triplets 
○ Good level of agreement (0.75 Fleiss Kappa)
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Data Labeling Quality
● Quality Estimation

○ 3 annotators, 150 conv–reply–tweet triplets 
○ Good level of agreement (0.75 Fleiss Kappa).

● Jaccard Similarity (5K–27K “correct” pairs)
○ Simple, yet effective, finds diverse examples
○ Tweets and claims are pre-processed
○ Mean similarity – claim vs. article “title” and “subtitle”

● Semi-Supervised (3.5K–49K “correct” pairs)
○ Based on the predictions of a Sentence-BERT 

■ cosine similarity
○ Includes multiple fields in the article encoding
○ Finds examples similar to the fine-tuning dataset

■ less difficult
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Datasets and Comparison
● CheckThat ’21 (CT) at CLEF (Shaar et al., 2021) 

○ Manually annotated
○ Contains 1.4K English examples 

(1,000 train, 200 dev/test)
○ Used for training and evaluation
○ 9K unique words (tweets), 13.8K articles
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Datasets and Comparison
● CheckThat ’21 (CT) at CLEF (Shaar et al., 2021) 

○ Manually annotated
○ Contains 1.4K English examples 

(1,000 train, 200 dev/test)
○ Used for training and evaluation
○ 9K unique words (tweets), 13.8K articles

● CrowdChecked (Ours)
○ Labeled w/ distant supervision
○ 7 sets of size 3.5K–49K (threshold based, English)
○ used only for training 
○ 114,727 unique words (all tweets), 10K articles
○ claims (tweets) have similar length to CT
○ 8K common fact-checking articles with CT
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Method Overview

Key Characteristics (Pipeline for 
Detecting Previously Fact-Checked Claims)

● General scheme: Sentence-BERT 
for semantic matching[1]

● Multiple Negatives Ranking loss[2]

○ shuffling
○ temperature

● Enriched scheme: 
○ SBERT, TF.IDF, and Re-ranking[3]

● Training w/ noisy data
○ Self-adaptive training[4]

○ Loss weighting [1] https://www.aclweb.org/anthology/D19-1410.pdf
[2] https://aclanthology.org/2022.naacl-main.9.pdf 
[3] http://ceur-ws.org/Vol-2936/paper-38.pdf
[4] https://proceedings.neurips.cc/paper/
2020/file/e0ab531ec312161511493b002f9be2ee-Paper.pdf
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Key Characteristics (Pipeline for 
Detecting Previously Fact-Checked Claims)

● General scheme: Sentence-BERT 
for semantic matching[1]

● Multiple Negatives Ranking loss[2]

○ shuffling
○ temperature

● Enriched scheme: 
○ SBERT, TF.IDF, and Re-ranking[3]

● Training w/ noisy data
○ Self-adaptive training*[4]

○ Loss weighting**

*where yr is the refined label of the rth example 
(initialized with the original label), α is a hyper-parameter, ŷ is the 
model prediction. 

c and v are the claim and verifying article representations (MNR loss)

**yr is squared (Huang et al. (2020) [4])
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Experimental Results
● CrowdChecked vs. CheckThat! ‘21

○ General scheme SBERT (better than IR)
○ CrowdChecked outperforms CheckThat
○ Training sequentially on the two datasets 

yields the best results 
● Model component analysis

○ Pipeline components’ contribution
(total of 2 points MAP@5)

○ Enriched Scheme adds +5 points
● State-of-the-art comparison

○ The ensemble adds +0.6 point
○ SOTA results +2 points MAP@5 *CrowdChecked sets are the largest from each strategy 

(Jaccard 27K, Cosine 49K) 9
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Discussion
● Labeling function and threshold

○ Lower threshold leads to higher MAP
○ There are low-precision buckets
○ Jaccard outperforms Cosine

● Estimating the total correct pairs 
○ Based on the manual annotations

(150 conversation–reply–tweet triplets)
○ Jaccard: 61,500 (Expectation)
○ Cosine: 90,170 (Expectation)

Estimated: 90K

Estimated: 61K
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Summary and Future Work

Summary

- We presented CrowdChecked, a large dataset for detecting previously fact-checked claims
- We collected 330K pairs of tweets and fact-checking articles form crowd fact-checkers
- We investigated two techniques for labeling the data using distance supervision
- We proposed a novel approach for training from noisy data 
- We demonstrated that our data yields sizable performance gains over strong baselines
- We achieved state-of-the-art results using CrowdChecked and the proposed pipeline
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Future Work

- Experiment with more languages 
- Evaluate other distant supervision techniques, e.g., predictions from an ensemble model
- Integrate the “incorrect” pairs into the model training

Summary and Future Work
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Download our dataset, and train new models!

https://github.com/mhardalov/crowdchecked-claims

If you have more questions, please contact 
hardalov@fmi.uni-sofia.bg

https://github.com/mhardalov/crowdchecked-claims
mailto:hardalov@fmi.uni-sofia.bg


Thank You for Listening!
Please check out our paper for more details:

“CrowdChecked: Detecting Previously Fact-Checked Claims in Social Media”

https://arxiv.org/abs/2210.04447

