Recent advances in deep neural networks, language modeling and language generation have introduced new ideas to the field of conversational agents. As a result, deep neural models such as sequence-to-sequence, memory networks, and the Transformer have become key ingredients of state-of-the-art dialog systems. While those models are able to generate meaningful responses even in unseen situations, they need a lot of training data to build a reliable model. Thus, most real-world systems have used traditional approaches based on information retrieval (IR) and even hand-crafted rules, due to their robustness and effectiveness, especially for narrow-focused conversations. Here, we present a method that adapts a deep neural architecture from the domain of machine reading comprehension to re-rank the suggested answers from different models using the question as a context. We train our model using negative sampling based on question–answer pairs from the Twitter Customer Support Dataset. The experimental results show that our re-ranking framework can improve the performance in terms of word overlap and semantics both for individual models as well as for model combinations.